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Abstract Scientific evidence continues to demonstrate the linkage of vascular contributions to cognitive
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impairment and dementia such as Alzheimer’s disease. In December, 2013, the Alzheimer’s Associ-
ation, with scientific input from the National Institute of Neurological Disorders and Stroke and the
National Heart, Lung and Blood Institute from the National Institutes of Health, convened scientific
experts to discuss the research gaps in our understanding of how vascular factors contribute to Alz-
heimer’s disease and related dementia. This manuscript summarizes the meeting and the resultant
discussion, including an outline of next steps needed to move this area of research forward.
� 2014 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

A recent scientific statement from the American Heart
Association (AHA) and American Stroke Association
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highlighted the significance of vascular contributions to
cognitive impairment and dementia [1], coined “VCID”
here and alternatively referred to as vascular dementia
and/or vascular cognitive impairment and/or vascular con-
tributions to dementia. This link between ischemic vascular
disease and dementia is clinically relevant as the former is
largely preventable by optimizing the identification and
management of vascular risk factors. The concept for
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VCID emerged as a leading priority at the National Insti-
tutes of Health (NIH) National Institute of Neurological
Disorders and Stroke (NINDS) hosted Stroke Research
Priorities Meeting [2] and also at the 2013 Alzheimer’s
Disease-Related Dementia (ADRD) Summit. The ADRD
Summit set two major research priorities for white matter
and grey matter small vessel VCID research over the next
5–10 years including: developing experimental models to
identify mechanisms and novel targets and encouraging
basic science investigation of the impact of AD risk factors
on cerebrovascular function and vice versa; and the devel-
opment of biomarkers for clinical research and trials [3,4].
The Alzheimer’s Association, with scientific input from the
NINDS and the National Heart, Lung and Blood Institute
(NHLBI) at NIH, convened a panel of cross-disciplinary
experts in Chicago, IL, on December 17, 2013 to determine
the state of the science and identify key gaps, including
unanswered research questions, which when addressed,
are predicted to translate into improved clinical outcomes
related to small vessel VCID. This manuscript summarizes
the proceedings of this discussion.
2. State of the science

Decades of data, including landmark work from the Hon-
olulu Asia Aging Study [5], the Rotterdam Study [6], and the
Religious Orders Study and Memory and Aging Project
Table 1

Brain vascular injuries and disease; Table 1 summarizes ascular tissue injury and ve

description

Vascular tissue injury Pathologic size

Gross or micro

visualization

Macroinfarcts

(also gross infarcts)

w � 1 mm

(random missing; �1 mm

toward 5 mm)

Gross

Microinfarcts 100 mm to 3 mm (missing based

on sampling protocol; mean

, 1 mm)

Microscopic

Primary intraparencymal

hemorrhages

�5 mm Gross

Microbleeds �5 mm Gross or micro

White matter hyperintensity

of presumed vascular origin

NA Gross or micro

Vessel disease Affected vessel Gross or micro

visualization

Atherosclerosis Arteries Gross (large/m

or microsco

arteries)

Arteriolosclerosis Arterioles Microscopic

Cerebral Amyloid angiopathy Arterioles

Arteries

Capillaries

Microscopic

Blood Brain Barrier Capillaries (as part

of neurovascular unit)

Electron micro

Abbreviations: MRI, magnetic resonance imaging; CSF, cerebrospinal fluid; FL
(ROS/MAP) [7,8] have provided significant insight into
potential links of vascular factors to dementia, including
AD. An important risk factor for dementia includes
lacunar and larger cerebral infarcts in the brain that are
pathologic markers of clinical or subclinical stroke [9–11].
Others have subsequently shown that ischemic brain
injury, commonly detected in pathology as macro- and
microinfarcts and vessel disease, e.g. atherosclerosis,
arteriosclerosis, and cerebral amyloid angiopathy (CAA)
(Table 1), are highly prevalent in older persons and are inde-
pendent risk factors for cognitive dysfunction and dementia
[6,12–17]. Over the past 50 years the control of vascular risk
factors, especially hypertension, has led to a major decline in
the annual risk of stroke. Whether improved control of
vascular risk factors has translated to decreased dementia
risk is not known but has been suggested [18].

The most common etiology of dementia in older persons
includes both mixed vascular and AD pathologies that
become even more common as aging increases as both
vascular and AD pathologies accumulate over time [19,20].
For example, in the longitudinal ROS/MAP, over half of
the individuals with AD had a combination of both AD and
vascular pathologies [7,8]. Importantly, the deleterious
effect of vascular pathologies combined with AD pathology
leads to increased likelihood of dementia; this is true for
both large infarcts (commonly manifested as stroke) and
microinfarcts in individuals with similar levels of AD
ssel disease, based on pathology, microscopic visualization and radiographic

scopic

Radiographic description

�3 mm on conventional

MRI imaging

(3 mm to 15 mm lesion CSF-density with FLAIR-

hyperintense rim defined as lacune of presumed

vascular origin) [76]

Mostly undetectable. Cortical microinfarcts 1–3 mm

may be visible as FLAIR-hyperintense lesions [77],

recent microinfarcts may be visible as DWI-

hyperintense lesions. [72]

�5–10 mm

scopic 2–10 mm on T2*-weighted MRI [76]

scopic Hyperintense on T2-weighted MRI [76]

scopic Radiographic description

edium arteries)

pic (medium/small

Angiography

Vascular Doppler examination

Carotid intimal-media thickness

Not directly visible

Amyloid ligand imaging [78,79]

scopy Dynamic contrast-enhanced MRI [80]

AIR, fluid-attenuated inversion recovery; DWI, diffusion-weighted MRI.
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neuropathology [21,22]. Vascular lesions detected by
imaging, particularly small vessel and microvascular white
matter damage, that are typically detected in current
clinical settings as type 2 hyperintensities on magnetic
resonance imaging (MRI), and also as leukoaraiosis
detected by CT, are also highly prevalent in the elderly, and
worsening is associated with cognitive decline [12,23].
Addition of either arteriosclerosis or atherosclerosis results
in further increased likelihood of microinfarcts, and an
even higher probability of dementia.
3. The plot thickens: molecular and vascular
mechanisms

Molecular mechanisms associated with both vascular and
AD pathologies have been linked in several ways and may
act synergistically to increase the likelihood of neuronal
death observed in mixed etiology. Decreased blood flow
before beta-amyloid (Ab) deposition has been observed in
the brain of both mouse models of AD and in individuals
with AD, and has been proposed to contribute directly to
the cognitive symptoms and, some studies suggest the
changes in the vasculature impair clearance of Ab, and
thereby accelerate the progression of AD [6,13–15].
Adding to this picture is considerable evidence that type 2
diabetes mellitus (T2DM) and insulin resistance are linked
to an increased risk of vascular disease, AD pathology, and
dementia [16,17,24]. However, the picture is far from clear
as there has also been evidence to the contrary [25].

Recent genetic studies provide further support for
VCID. The International Genomics of Alzheimer’s Project
(I-GAP), funded in part by the Alzheimer’s Association, pub-
lished a meta-analysis of data from nearly 75,000 individuals
and identified 21 genetic risk loci for late-onset AD [26]. In-
dividuals with small vessel cerebrovascular disease were not
excluded because it is integral with a large proportion of AD,
as discussed previously. However, pathologic analysis of a
subset of I-GAP individuals enabled comparison of the
odds ratio (OR) for AD dementia for each of the genetic
loci based on clinical diagnosis alone, clinical plus standard
pathological definition (plaques and tangles), or additional
criteria that take into account vascular pathology. Interest-
ingly, for individuals included in I-GAPwith vascular lesions
the OR of specific genetic loci were different (either
increased or decreased) compared with the OR calculated us-
ing individuals with “pure” AD-pathology. This key finding
suggests some loci may function and respond differently
with respect to vascular vs. traditional AD (i.e. plaques and
tangles) pathology and set the stage for needed further inves-
tigation to understand the linkage of underlying mechanisms
with both pathological and cognitive changes.

The innate immune system has long been implicated as a
potential connection point between AD and vascular disease.
Innate immunity is activated both in cerebrovascular disease
[27] and in AD, in which postmortem studies show chronic
inflammation characterized by an influx of activated micro-
glia and infiltrating monocytes around plaques and tangles
[28]. Lue and colleagues reported that plaques and tangles
appear only to cause neurodegeneration when inflammation
is also present [29]. While it is unclear whether the recruit-
ment of the innate immune system is a response to damage
or pathogenic in nature, large genome-wide association
study (GWAS) studies suggest innate immune cells,
including resident microglia and infiltrating monocytes
and may drive AD pathogenesis through vascular related
mechanisms that we are just beginning to understand
[30,31]. A potential intersection point between immune
infiltration and VCID may be the disruption of the blood
brain barrier (BBB), which is commonly demonstrated in
post-mortem brain tissue studies of individuals with AD-
related cognitive impairment, although the mechanism and
timing of BBB dysfunction during pathogenesis remains
unclear [32–37].

The brain is the most lipid rich organ in the body and has a
specialized system to carry fats; several lines of evidence sug-
gest that lipid and lipoprotein metabolism may provide key
insight into VCID and AD. Lipid metabolism has long been
implicated in AD; APOE is both a known genetic risk factor
for late onset AD and is the primary lipid carrier in the brain
[38]. ApoE4, the product of the detrimental APOE ε4 allele,
has multiple neuropathological effects in the central nervous
system, including impaired clearance of Ab and contributing
to a loss of cerebrovascular integrity and breakdown of the
BBB [39]. Mechanistically, the proinflammatory cyclophylin
A (CypA)-matrix metalloproteinase-9 (MMP-9) pathway is
activated in pericytes in transgenic humanized APOE ε4
knock-in mice, leading to degradation of endothelial tight
junctions and basement membrane proteins, and thus disrup-
tion of the BBB [40]. Consistent with findings in transgenic
APOE ε4 mice, a recent study in cognitively normal humans
found age-dependent BBB breakdown in APOE ε4 carriers
vs. non-APOE ε4 carriers, as indicated by an increased
cerebrospinal fluid (CSF)/plasma albumin ratio and increased
CypA and MMP-9 levels in the CSF [41]. Irrespective of
mechanism, BBB disruption exposes the brain
parenchyma to potentially neurotoxic blood proteins, e.g.
thrombin, fibrin, plasmin, and hemoglobin, and the iron
from lysed erythrocytes (i.e., siderosis) [42].

The cholesterol transporter ABCA1 delivers lipids to
ApoE and ApoA-I, the primary protein component of
plasma high density lipoprotein (HDL; “good cholesterol”).
ApoE and ApoA-I in turn transport cholesterol from organs
and arterial walls to the liver for excretion [43]. In ABCA1
deficient mice, ApoE particles in the brain cannot become
lipidated, ultimately resulting in increased amyloid burden
in the dentate gyrus; conversely, in mice that overexpress
ABCA1 in brain, amyloid burden is nearly eliminated [44].
Thus, several drug discovery programs are seeking to in-
crease ABCA1 expression, for example by using liver X re-
ceptor agonists [45]. Like ApoE, ApoAI may also play an
important role in vascular contributions to brain health, as
indicated by studies of APOA-I/APOA-I knockout or
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apoA-I transgenic mice crossed with the amyloid precursor
protein (APP)/PS1DE9 transgenic AD mouse model, where
decreased amyloid load and improved cognitive perfor-
mance are directly correlated with ApoA-I abundance
[46,47]. ApoA-I and HDL are well established to protect
endothelial function and promote endothelial repair in large
peripheral vessels [48–50], and are also reported to affect
activity of the innate immune system and provide anti-
inflammatory and antioxidant functions [48,49,51]. Taken
together, understanding the roles of ApoA-I and HDL in
neurovascular physiology is an important priority.

Cerebral pial collateral circulation has a special role in
limiting damage due to cerebrovascular occlusion. The
adverse hemodynamic environment present in the pia limits
collateral circulation under normal condition, but when
brain circulation is compromised, e.g. in an ischemic event,
these pial collaterals can facilitate compensatory blood
perfusion in brain regions that would otherwise be (even
more) compromised. Genetic and environmental factors
can combine to limit the anatomical extent and capacity of
pial collaterals for compensatory circulation, and thus
significantly increase severity of brain injury in occlusive
vascular disease [52,53]. For example, aging causes the
rarefaction of collateral vessels associated with
dysfunctional nitric oxide synthase signaling and increased
collateral tortuosity and resistance, increasing the severity
of ischemic injury [54], and genetic variation has been
shown to influence and limit the extent of compensatory
collateral circulation [55].

An emerging area of interest in cerebrovascular circula-
tion in health and disease that may help identify novel
drug targets is clearance of parenchymal waste, including
Ab, into the CSF via perivascular circulation (also referred
to as the glymphatic system [56,57]). Xie and colleagues
demonstrated glymphatic Ab clearance occurs during
sleep [58], correlating with findings that both AD and
VCID are linked to sleep disturbances [59]. In addition to
this potential role for the glymphatic system, BBB transport
of Ab from the parenchyma directly into vascular circulation
is severely compromised in transgenic AD mouse models,
and is a significant area for potential therapeutic develop-
ment [60,61]. In the vasculature itself, another emerging
topic with novel potential for intervention is stalled blood
flow in brain capillaries due to leukocyte adherence to the
endothelial lumen wall [62]. When leukocytes adhere to
the endothelium due to inflammation, only a small number
of affected capillaries in the brain can result in significant
decreases in downstream blood flow [62].
4. Animal models as a research tool

The VCID field needs to incorporate vascular factors,
both genetic and nongenetic, to create novel models of
mixed dementia that are truly representative of the human
disorder, in particular, for the purposes here, small vessel
VCID. Several types of vascular models are currently used
to study how vascular disease contributes to dementia: mid-
dle cerebral artery occlusion mouse model of stroke [63,64];
the bilateral common carotid stenosis model that creates
chronic cerebral hypoperfusion [65]; several mutant APP
transgenic mice that develop CAA and CAA-related cere-
brovascular deficits in addition to classic parenchymal Ab
pathology [66]; and, finally, the Dutch APP mutation mouse
model of CAA that develops extensive vascular Ab deposits
at an advanced age, but develop very few parenchymal Ab
plaques [67]. There is also a more aggressive mouse model
of CAA that includes Ab accumulation in the vessel wall
[68]. Another potential model where rats are fed the Japa-
nese Permissive Diet of low protein and high salt, they
develop spontaneous hypertensive/stroke with unilateral
carotid occlusion and white matter damage that evolves
over weeks to months [69].

In yet another model of cardiovascular disease, wild type
mice fed a diet deficient in B6, B12, and folic acid develop
hyperhomocysteinemia, which is implicated as a potential
risk factor for cardiovascular disease, stroke, T2DM,
vascular dementia, and AD [70]. Feeding this diet to a trans-
genic mouse overexpressing APP induced a proinflamma-
tory state and a change in the distribution of amyloid.
Furthermore, these mice have cognitive impairments and
an increased number of microhemorrhages. Hypertensive
animal models, such as those that display white matter dis-
ease, may also be useful, because a major risk factor for
cerebrovascular disease is hypertension. In this regard, one
example of a mouse model already used for systemic
vascular and cardiac research, that may be useful for better
understanding VCID, overexpresses renin under an albumin
promoter and develops allele dose-dependent hypertension,
heart failure, and loss of collaterals in the hetero- and homo-
zygous strains [71]. Despite the utilization of these models,
the field still lacks clear animal model(s) to tease out the role
of VCID (such as associated risk factors) in dementia onset
and progression. As discussed in the later section, the need
for new model systems with metabolic similarity to humans,
such as animal models with white matter vascular injury,
animal models of hypertension or the potential utility of
stem cell/induced pluripotent models are in need of further
exploration.
5. Biomarkers of VCID

Biomarkers that precede and predict onset and that
demonstrate the level of burden and track progression of
small vessel disease-related brain injuries are the gold stan-
dard for the scientific community. Such a biomarker (or
group of biomarkers) would greatly enhance the develop-
ment of interventions for VCID with the greatest impact
on AD and the associated high disease burden of related
mixed dementias with a vascular component. Today, subsets
of such biomarkers are in early development in clinical
research with the ultimate goal of transferring to a clinical
setting, and there is still much unknown about the
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longitudinal changes associated with VCID that may inform
biomarker discovery. Tools such as diffusion-weighted MRI
(DWI-MRI) sequences to characterize acute/subacute
microinfarcts [72] and functional MRI to assess impaired
vascular reactivity associated with CAA [73] are being
explored. Another area of exploration, such as a CAA-
specific amyloid PET imaging tracer may be useful for diag-
nosing CAA before clinical symptoms become apparent,
quantifying CAA burden at the time of symptom presenta-
tion, monitoring CAA progression over time, and/or assess-
ing response to a CAA-directed treatment. During
investigation of CAA in mouse models, Zipfel and col-
leagues identified a fluorescent phenoxazine analog called
resorufin that preferentially binds to CAA rather than paren-
chymal Ab [74], and are now working to develop second-
generation analogs to overcome challenges associated with
affinity and solubility to ultimately yield a PET ligand for
suitable clinical use. Such tools may provide insight into
VCID related changes and possible information on the lon-
gitudinal progression of these changes. Additional areas of
exploration for potential biomarkers include measures
related to microinfarcts, microbleeds, siderosis, white matter
lesions, microinfarcts, altered microstructure, BBB break-
down, cerebrovascular endothelial dysfunction, and pericyte
degeneration (shown to play a critical role in animal models
of AD) [75], and various aspects of immune dysfunction and
inflammation, blood flow reductions, and vascular compli-
ance. A greater understanding of the biological underpin-
nings discussed above will significantly inform the
development of novel and informative biomarkers related
to VCID.
6. Summary and next steps

One of the key concepts to emerge from this meeting is
the recognition that cerebrovascular disease, particularly
the small vessel disease that is common in aging, does not
typically occur in isolation, and is often associated with
AD and especially with cognitive decline. Further there is
a broad spectrum of other comorbid conditions that
commonly coexist with AD and related dementia, including
hypertension, diabetes, hypercholesterolemia, obesity, low
physical activity, depression, and smoking. In discussion
about how to move the field forward, meeting participants
identified two focus areas: (1) the need to identify and under-
stand the molecular and cellular mechanisms and targets that
underlie the contribution of vascular disease to AD and
dementia; and (2) the need to facilitate development and
validation of noninvasive biomarkers of key vascular
processes related to cognitive and neurologic impairment.
For both of these goals, it is clear that new research tools
are needed, including innovative technical approaches to
imaging and fluid-based clinical research, and biological
tools including humanized animal models, animal models
with metabolic fidelity to humans, animal models with white
matter vascular injury, animal models of hypertension; and
the potential utility of stem cell/induced pluripotent or addi-
tional in vitro models engineered to mimic the neurovascular
unit. Tools are needed to answer gaps identified during this
meeting:

� Lipid metabolism and its role in amyloid deposition
and cognitive/behavioral change.

� Various roles of different cell types of the innate and
adaptive immune systems.

� Vascular injury and the response to injury.
� Mechanisms underlying brain blood flow decrease in

AD and other dementias.
� The role of small vessel disease and blood-brain barrier

breakdown.
� Effects of reduced blood flow and changes in blood

pressure.
� Role of and interactions with other risk factors such as

diabetes, including study of the prediabetic brain
without the confounding effects of treatment.

� Genetic cross-talk between the vasculature and the
brain.

� Studies of mixed etiology AD dementia.
� Effects of interventions to control vascular risk factors

on cognition.

Novel biomarkers are also needed both for investigation
of basic science research questions and to be developed as
potential clinical disease markers. These markers need to
be validated at an early stage in humans to ensure applica-
bility for human studies:

� Better markers of blood flow, particularly for cerebral
small vessels and collateral circulation.

� A CAA-specific or other imaging compound that rec-
ognizes beta-amyloid or other markers, specifically
and selectively in the cerebrovasculature.

� Markers that enable more precise assessment of where
pathology occurs in the brain parenchyma and blood
vessels and the quantitative distribution of pathology.

� Biomarkers that detect breakdown or dysfunction of
blood-brain barrier permeability.

� Biomarkers that reflect damage to brain structure and
connectivity caused by microinfarcts, which are
largely undetectable to current neuroimaging.

� Vascular biomarkers of AD/dementia risk in predia-
betic and insulin-resistant adults.

� Improved imaging markers of cerebral vascular
dysfunction.

� Markers of peripheral circulatory system components
that contribute to neuroinflammation.

� Improved outcome measures and clinical diagnostic
criteria that accurately reflect the range of vascular
events that impact cognition and determine the effects
of vascular risk factor control on cognition.

The mobilization of such studies will require significant
and targeted investment at the national and international
levels. To help initiate the global commitment of both the
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funding and the scientific communities, the Alzheimer’s
Association launched a targeted grant program to fund pilot
investigations for further discovery, and ultimately, motivate
increased new investment by the international scientific
funding communities into the VCID area of study.

Future investment for these areas of scientific discovery
will be essential to galvanize the scientific community and
provide forums of communication between the dementia
and vascular fields. As a next step, focused research sessions
and presentations are at various stages of planning for annual
AD, dementia, and cardiovascular focused conferences,
including the Alzheimer’s Association International Confer-
ence; two AHA conferences, including Atertiosclerosis,
Thrombosis, and Vascular Biology 2014 and the AHA
Scientific Sessions 2014; and the NIH-sponsored Workshop
on Small Blood Vessel Biology and Disease. There is a clear
need to both convene cross-disciplinary dialogues of the
vascular and dementia communities and provide opportu-
nities of global investment toward the ultimate goal of
successful vascular intervention to decrease the burden of
AD and other dementias.
RESEARCH IN CONTEXT

1. Systematic review: Significant research is ongoing to
better understand vascular contributions to cognitive
impairment and dementia. In December 2013, the
Alzheimer’s Association, with scientific input from
National Institute of Neurological Disorders and
Stroke and National Heart, Lung and Blood Institute,
convened experts from around the world to focus on
how vascular factors contribute to Alzheimer’s dis-
ease and related dementia. This manuscript summa-
rizes the meeting and the resultant discussion.

2. Interpretation: One of the key concepts to emerge is the
recognition that cerebrovascular disease, particularly
small vessel disease, does not typically occur in isola-
tion, and is often associated with cognitive decline.

3. Future directions: In discussion about how tomove the
field forward, meeting participants identified: (1) the
need to identify and understandmolecular and cellular
mechanisms and targets underlying the contribution of
vascular disease to Alzheimer’s and dementia; and (2)
the need to facilitate development and validation of
noninvasive biomarkers of key vascular processes
related to cognitive and neurologic impairment.
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